HARDFACING ALLOYS

Hardfacing Alloys

Kennametal Stellite is a global provider of solutions to wear, heat, and corrosion problems and is a world-class manufacturer of alloybased materials and components. These consumables come in the form of rod, wire, powder, and electrode and can be custom engineered to meet individual customer needs.

In addition to welding consumables, Kennametal Stellite also offers its expertise and experience in coating services in the form of HVOF (High-Velocity Oxy Fuel) coatings and weld hardfacings. In the UK and in Shanghai, hardfaced components can be manufactured complete to drawing by in-house machine shops.

Industries Served

Kennametal Stellite offers its proven heat, wear, and corrosion experience and customized solutions to a broad range of industries, including:

- Aerospace
- Oil & Gas
- Automotive
- Power Generation
- Steel
- Timber
- Glass
- Forging
- Dental

Table of Contents

At a Glance	2
TIG and Oxy-Acetylene Welding	4
MMA Weld Deposition	6
MIG Weld Deposition, Submerged Arc Welding	8
PTA & Laser Weld Deposition1	0
HVOF & Plasma Spray Deposition1	4
Spray and Fuse & Powder Welding2	0

Hardfacing Alloys

Stellite[™] Alloys

The cobalt-based Stellite[™] alloys are our most wellknown and successful alloys, with the best "all-round" properties. They combine excellent mechanical wear resistance, especially at high temperatures, with very good corrosion resistance. The Stellite[™] alloys are mostly cobalt based with additions of Cr, C, W, and/or Mo. They are resistant to cavitation, corrosion, erosion, abrasion, and galling. The lower carbon alloys are generally recommended for cavitation, sliding wear, or moderate galling. The higher carbon alloys are usually selected for abrasion, severe galling, or lowangle erosion. Stellite[™] 6 is our most popular alloy as it provides a good balance of all of these properties. The Stellite[™] alloys retain their properties at high temperatures where they also have excellent oxidation resistance. They are typically used in the temperature range 315–600° C (600–1112° F). They can be finished to exceptional levels of surface finish with a low coefficient of friction to give good sliding wear.

Deloro[™] Alloys

The Deloro[™] alloys are nickel based with additions of typically Cr, C, B, Fe, and Si. They cover a very wide range of hardness from soft, tough, build-up alloys that are easily machined or hand finished to exceptionally hard, wear-resistant alloys. They can be selected for hardnesses of between 20 and 62 HRC depending on the application. Their low melting point makes these powders ideal for spray/fuse or powder welding applications. The lower hardness Deloro[™] alloys are typically used for glass forming molds. The higher hardness Deloro[™] alloys are used in severe wear applications, such as rebuilding the flights of feeder screws, and they can be blended with carbides for an even harder deposit. They maintain their properties up to temperatures of about 315° C (600° F) and also offer good oxidation resistance.

Tribaloy[™] Alloys

Tribaloy[™] alloys, with either nickel or cobalt base, were developed for applications in which extreme wear is combined with high temperatures and corrosive media. Their high molybdenum content accounts for the excellent dry-running properties of Tribaloy[™] alloys and makes them very suitable for use in adhesive (metal-to-metal) wear situations. Tribaloy[™] alloys can be used up to 800–1000° C (1472–1832° F).

Nistelle[™] Alloys

Nistelle[™] alloys are designed for corrosion resistance rather than wear resistance, particularly in aggressive chemical environments where their high chromium and molybdenum contents provide excellent pitting resistance. As a class, they are also generally resistant to high-temperature oxidation and hot gas corrosion. Care should be taken to select the correct alloy for any given corrosive environment.

Stelcar[™] Alloys

www.kennametal.com/stellite

Stelcar[™] alloys are mixtures of carbide particles and nickel- or cobalt-based powders. Due to their construction, Stelcar[™] materials are available only in powder form, for application by thermal spraying or weld hardfacing.

Selection Table		
	ALLOY	MECHANICAL WEA
	Stellite™	
	Deloro™	
Resistance	Tribaloy™	
Low	Nistelle™	
Satisfactory	Delcrome™	
Very Good	Stelcar™	
Excellent	Jet Kote™	

Jet Kote[™] Powder

Jet KoteTM powders are used for thermal spraying, and they usually consist of either a carbide-metal combination (e.g., WC-Co or Cr_3Cr_2 -NiCr) or a StelliteTM alloy.

Delcrome[™] Alloys

These iron-based alloys were developed to resist abrasive wear at lower temperatures, typically up to 200° C. When compared with our cobalt- and nickel-based alloys, their corrosion resistance is also comparatively low.

TIG and Oxy-Acetylene Welding

In TIG (Tungsten Inert Gas), also known as Gas Tungsten Arc Welding (GTAW), an arc is drawn between a nonconsumable tungsten electrode and the workpiece. The electrode, the arc, and the weld-pool are protected from the atmosphere with an inert shielding gas. The hardfacing material is in the form of a rod. Advantages of the TIG process include simple manual operation and good control of the welding arc. The process can also be mechanised, in which case a manipulator is used to move the workpiece in relation to the welding torch and the hardfacing rod or wire.

Welding rods used for TIG welding are also used for hardfacing with the oxy-acetylene welding process. With the correct operation, a very low level of iron dilution can be achieved in the overlay.

Rod is available in these standard diameters:

- 2,6mm (3/32") (special order)
- 3,2mm (1/8")
- 4,0mm (5/32")
- 5,0mm (3/16")
- 6,4mm (1/4")
- 8,0mm (5/16")

Rod inventory held in North America is typically in 36" lengths. In other countries (also available to special order in the USA and Canada), rod is available in these standard lengths:

- 350mm (14")
- 500mm (20")
- 970-1000mm (38-40" or 3.2-3.3')
- 1,2m (approx. 4' or 47")
- 1,5m (approx. 5' or 60")
- 2m (approx. 6.5')
- 4m (approx. 13')

Rod inventory held in North America is typically packaged in 20 lb bundles. Elsewhere, rod is packaged in 10 kg (22 lb) bundles for the shorter lengths, while longer lengths or larger diameters may be bundled in 25 kg (55 lb) bundles. Rod can also be bundled to customer requirement.

TIG and Oxy-Acetylene Welding

		NO	MINAL A	NALYSIS	OF WE	LDING R	OD ¹		01		ASME/	Hardness
ALLOY	Со	Cr	W	С	Ni	Мо	Fe	Si	Others	UNS	AWS ²	(HRC) ³
			CC	BALT-BAS	SED ALLO	Y BARE W	VELDING	RODS				
Stellite [™] alloy 1	Bal.	32	12	2.45	<3.0	<1.0	<3.0	<2.0	<0.5	R30001	(SF)A 5.21 ERCoCr-C	51–56
Stellite [™] alloy 6	Bal.	30	4–5	1.2	<3.0	<1.0	<3.0	<2.0	<0.5	R30006	(SF)A 5.21 ERCoCr-A	40–45
Stellite [™] alloy 12	Bal.	30	8	1.55	<3.0	<1.0	<3.0	<2.0	<0.5	R30012	(SF)A 5.21 ERCoCr-B	46–51
Stellite [™] alloy 20	Bal.	33	16	2.45	<3.0	<1.0	<3.0	<2.0	<0.5	-	-	53–59
Stellite [™] alloy 21	Bal.	28	-	0.25	3	5.2	<3.0	<1.5	<0.5	R30021	(SF)A 5.21 ERCoCr-E	28–40*
Stellite [™] alloy 22	Bal.	28	-	0.30	1.5	12	<3.0	<2.0	<0.5	-	-	41–49
Stellite [™] alloy 25	Bal.	20	14	0.1	10	<1.0	<3.0	<1.0	<0.5	-	-	20–45
*Stellite [™] alloy 31	Bal.	26	7.5	0.5	10	-	<2.0	<1.0	<0.5	R30031	-	20–35 *
*Stellite [™] alloy F	Bal.	26	12	1.7	22	<1.0	<3.0	<2.0	<0.5	R30002	(SF)A 5.21 ERCoCr-F	40–45
Stellite [™] alloy 107	Bal.	31	4	2	24	-	<2.0	<3.0	<0.5	-	-	38–47
Stellite [™] alloy 190	Bal.	27	13.5	3.2	<1.0	<1.0	<3.0	1.0	<0.5	R30014	(SF)A 5.21 ERCoCr-G	54–59
Stellite [™] alloy 250	Bal.	28	-	0.1	-	-	21	<1.0	<0.5	-	-	20–28
Stellite [™] alloy 694	Bal.	28	19	1	5	-	<3.0	1	1%V	-	-	48–54
Stellite [™] alloy 706	Bal.	31	-	1.2	<3.0	4	<3.0	<1.0	<1.0	-	-	39–44
Stellite [™] alloy 712	Bal.	31	-	1.55	<3.0	8	<3.0	<2.0	<1.0	-	-	46–51
ULTIMET [™] **	Bal.	26	2	0.06	9	5	3	-	<1.0	R31233	-	28–45*
			NI	CKEL-BAS	SED ALLO	Y BARE V	VELDING	RODS				
Nistelle [™] alloy C	-	17	5	0.1	Bal.	17	6	-	0.3%V	N30002	-	17–27*
Nistelle [™] alloy 625	-	21	-	<0.10	Bal.	8.5	<5	-	3.3%	N06625	(SF)A 5.14 E	RNiCrMo-3
Deloro [™] alloy 40	-	12	-	0.4	Bal.	-	2–3	2.9	1.6% B	N99644	(SF)A 5.21 ERNiCr-A	36–42
Deloro [™] alloy 50	-	12	-	0.5	Bal.	-	3–5	3.5	2.2% B	N99645	(SF)A 5.21 ERNiCr-B	48–55
Deloro [™] alloy 55	-	12	-	0.6	Bal.	-	3–5	4.0	2.3% B	-	-	52–57
Deloro [™] alloy 60	-	13	-	0.7	Bal.	-	3–5	4.3	3.0% B	N99646	(SF)A 5.21 ERNiCr-C	57–62
		INTER-MI	ETALLIC L	AVES PH	ASE ALLC	OY WELDI	NG RODS	(TRIBALC	Y [™] ALLOYS)		
Tribaloy [™] alloy T-400	Bal.	8.5	-	<0.08	<1.5	28	<1.5	2.5	<1.0	R30400	_	54–58
Tribaloy [™] alloy T-400C	Bal.	14	_	<0.08	<1.5	27	<1.5	2.6	<1.0	_	_	54–59
Tribaloy [™] alloy T-401	Bal.	17	-	0.2	<1.5	22	<1.5	1.3	<1.0	-	-	47–53
Tribaloy [™] alloy T-700 _(Ni based)	<1.5	16	-	<0.08	Bal.	32	<1.5	3.4	<1.0	-	-	50–58
Tribaloy [™] alloy T-800	Bal.	18	-	<0.08	<1.5	28	<1.5	3.4	<1.0	-	-	55–60
Tribaloy [™] alloy T-900	Bal.	18	-	<0.08	16	22	-	2.7	<1.0	-	-	52–57

1 Nominal analysis is a guideline only for standard product. Does not include all incidental elements and may differ depending on the exact specification/standard used when ordering. ² When written certification to a standard is required, please specify this when ordering. Certain products can also be certified to AMS, SAE, and other standards. Please contact us for more details 3 Undiluted weld metal.

* Depending upon the degree of work hardening. **ULTIMET[™] is a registered trademark of Haynes International

Manual Metal Arc (MMA) Weld Deposition

In this process, an arc is drawn between a coated consumable electrode and the workpiece. The metallic core is melted by the arc and is transferred to the weld pool as molten droplets. The electrode coating also melts to form a gas shield around the arc and the weld pool as well as a slag on the surface of the weld pool, thus protecting the cooling weld-pool from the atmosphere. The slag must be removed after each layer.

MMA welding is still a widely used hardfacing process. Due to the low cost of the equipment, the low operating costs of the process, and the ease of transporting the equipment, this flexible process is ideally suited to repair work.

MMA Weld Deposition

ALLOY	Ν	IOMINAL	ANALY	SIS OF U	INDILUT	ED WELI	D METAL	4	Others	LINS	ASME/	Hardness
ALLOI	Co	Cr	W	С	Ni	Мо	Fe	Si	Others	ono	AWS⁵	(HRC) ⁶
				COBALT	-BASED A	LLOY EL	ECTRODE	S				
Stellite [™] alloy 1	Bal.	31	12	2.45	<3.0	<1.0	<3.0	<2.0	<1.0	W73001	(SF)A 5.13 ECoCr-C	51–56
Stellite [™] alloy 6	Bal.	29	4	1.2	<3.0	<1.0	<3.0	<2.0	<1.0	W73006	(SF)A 5.13 ECoCr-A	39–43
Stellite [™] alloy 12	Bal.	30	8	1.55	<3.0	<1.0	<3.0	<2.0	<1.0	W73012	(SF)A 5.13 ECoCr-B	45–50
Stellite [™] alloy 20	Bal.	32	16	2.45	<3.0	<1.0	<3.0	<2.0	<1.0	_	_	53–57
Stellite [™] alloy 21	Bal.	28	-	0.25	3	5.5	<3.0	<1.5	<1.0	W73021	(SF)A 5.13 ECoCr-E	28–40 *
Stellite [™] alloy 25	Bal.	20	14	0.1	10	<1.0	<3.0	<1.0	<1.0	-	-	20–45 *
Stellite [™] alloy 250	Bal.	28	-	0.1	-	-	21	<1.0	<1.0	-	-	20–28 *
Stellite [™] alloy 706	Bal.	30	-	1.2	<3.0	4	<3.0	<1.0	<1.0	_	_	39–44
Stellite [™] alloy 712	Bal.	30	-	1.55	<3.0	8	<3.0	<2.0	<1.0	_	_	46–51
ULTIMET [™] **	Bal.	26	2	0.06	9	5	3	-	<1.0	-	_	28–45 *
				NICKEL	-BASED A	LLOY EL	ECTRODE	S				
Nistelle [™] alloy C	_	17	5	0.1	Bal.	17	6	-	0.3%V	W80002	-	17–27*

⁴ Nominal analysis is a guideline only for standard product. Does not include all incidental elements and may differ depending on the exact specification/standard used when ordering. ⁵ When written certification to a standard is required, please specify this when ordering. Certain products can also be certified to AMS, SAE, and other standards. Please contact us for more details. ⁶ Undiluted weld metal.

Electrodes are available in these standard diameters

2,6mm (3/32") (special order)

3,2mm (1/8")

4,0mm (5/32")

• 5,0mm (3/16")

• 6,4mm (1/4")

Electrodes are supplied in lengths of 350mm (14") and are boxed in 5.0 kg (11 lb) boxes. Depending upon the process parameters, the hardness of the welded deposit can vary from the values provided in the table above.

* Depending upon the degree of cold-working **ULTIMET[™] is a registered trademark of Haynes International.

www.kennametal.com/stellite

MIG Weld Deposition, Submerged Arc Welding

In these arc welding processes, consumable hardfacing wire is fed continuously from a spool through the welding torch into the arc, where it is melted and transferred to the workpiece.

In the case of MIG welding, also known as Gas Metal Arc Welding (GMAW), the weld pool is protected from the atmosphere by a stream of shielding gas. The MIG process is very flexible — it can be partially or fully mechanised and is suitable for a wide range of applications.

Wire is also used as the hardfacing consumable in the Submerged Arc Welding (SAW) process. In this process, a mineral-based fluxing powder flows around the consumable wire and is melted by the arc. It forms a gaseous shield around the arc and also forms a slag on top of the weld pool, shielding the cooling weld pool from the atmosphere.

MIG Weld Deposition

	I	OMINA	L ANALYSIS OF UNDILUTED WELD METAL ⁷						ASME/	Hardness		
ALLOI	Co	Cr	W	C	Ni	Мо	Fe	Si	Others	UNS	AWS [®]	(HRC)°
				COBAL	F-BASED	ALLOY CO	RED WIR	E				
Stellite [™] alloy 1	Bal.	28	11.5	2.45	<3.0	<1.0	<5.0	<2.0	<1.0	W73031	(SF)A 5.21 ERCCoCr-C	50–55
Stellite [™] alloy 6	Bal.	30	4.5	1.2	<3.0	<1.0	<5.0	<2.0	<1.0	W73036	(SF)A 5.21 ERCCoCr-A	38–44
Stellite [™] alloy 12	Bal.	29	8	1.55	<3.0	<1.0	<5.0	<2.0	<1.0	W73042	(SF)A 5.21 ERCCoCr-B	45–50
Stellite [™] alloy 21	Bal.	28	-	0.25	3	5.2	<5.0	<1.5	<1.0	W73041	(SF)A 5.21 ERCCoCr-E	28–40 *
Stellite [™] alloy 21 LC	Bal.	26	_	0.1	4	6.0	<5.0	<1.5	<1.5	Proprietary cra alloy specially hardfacing of f	ck-resistant developed for orging dies	25–40 *
Stellite [™] alloy 25	Bal.	20	14	0.1	10	<1.0	<3.0	<1.0	<1.0	-	-	20–45 *
Stellite [™] alloy 250	Bal.	28	-	0.1	-	-	21	<1.0	<1.0	-	-	20–28
Stellite [™] alloy 706	Bal.	31	-	1.2	<3.0	4	<3.0	<1.0	<1.0	-	-	39–44
Stellite [™] alloy 712	Bal.	31	-	1.55	<3.0	8	<3.0	<2.0	<1.0	-	-	46–51
ULTIMET [™] **	Bal.	26	2	0.06	9	5	3	-	<1.0	R31233	-	28–45 *
				NICKEL	-BASED	ALLOY CO	RED WIR	E				
Nistelle [™] alloy C	-	17	5	0.1	Bal.	17	6	-	0.3%V	N30002	-	17–27*
Deloro [™] alloy 40	-	10	-	0.4	Bal.	-	2–3	2.9	1.6% B	W89634	(SF)A 5.21 ERNiCr-A	35–40
Deloro [™] alloy 50	-	12	-	0.5	Bal.	-	3–5	3.5	2.2% B	W89635	(SF)A 5.21 ERNiCr-B	47–52
Deloro [™] alloy 60	-	13	-	0.7	Bal.	-	3–5	4.3	3.0% B	W89636	(SF)A 5.21 ERNiCr-C	56–61
		INTER-	METALLIC	LAVES P	HASE ALL	OY CORE	D WIRE (TRIBALO	/ [™] ALLOYS)			
Tribaloy [™] alloy T-401	Bal.	17	-	0.2	<1.5	22	<1.5	1.3	-	-	-	46–52

⁷ Nominal analysis is a guideline only for standard product. Does not include all incidental elements and may differ depending on the exact specification/standard used when ordering.
 ⁸ When written certification to a standard is required, please specify this when ordering. Certain products can also be certified to AMS, SAE, and other standards. Please contact us for more details.
 ⁹ Undiluted weld metal. Please note that the hardness of the Deloro[™] Ni-based alloys is very sensitive to dilution.

Electrodes are available in these standard diameters

1,2mm (0.045") — supplied in 15 kg (33 lb) spools

• 1,6mm (0.062") — supplied in 15 kg (33 lb) spools

www.kennametal.com/stellite

2,4mm (0.093") — typically supplied in 25 kg (55 lb) spools (optionally in 15 kg spools)
 3,2mm (0.126") (special order) — supplied in 15 kg (33 lb) spools

Depending upon the process parameters, the hardness of the welded deposit can vary from the values provided in the table above

* Depending on the degree ofcold working. **ULTIMET[™] is a registered trademark of Haynes International

Plasma Transferred Arc (PTA) Weld Deposition

The PTA process is easily automated, providing a high degree of reproducibility of the weld overlays. In addition, because of the highly concentrated heat source, this process benefits from high powder utilization and can achieve a very low level of iron dilution in the overlay.

Because the hardfacing materials are in powder form, it is possible to produce overlays from many different materials and combinations of materials with a wide range of hardness and other properties.

Laser Weld Deposition

When overlaying with a laser, an optical arrangement is used to focus the laser beam on the workpiece and heat it. Simultaneously, hardfacing material in the form of powder or wire is introduced into the laser beam and melted. Due to the narrow heat-affected zone and the fast cooling rate, the heat input is low, thereby producing an almost stress-free overlay.

Compared with other welding processes, for a given hardfacing alloy, the fast cooling rate of the laser process produces an overlay with a significantly higher hardness and finer microstructure.

www.kennametal.com/stellite

Laser Head

Laser Light

Shielding Gas

PTA Weld Deposition

		I	NOMINA	L ANALY	SIS OF F	OWDER	1		Others		Hardness	
ALLUT	Co	Cr	W	C	Ni	Мо	Fe	Si	Others	UNS	(HRC) ²	
		C	OBALT-BA	SED ALL	OY (GAS-/			RS)				
Stellite [™] alloy 1	Bal.	30	13	2.5	<2.0	<1.0	<2.0	<2.0	<1.0	R30001	51–60	
Stellite [™] alloy 4	Bal.	30	13.5	0.7	<2.5	<1.0	<2.5	<1.0	<1.0	R30404	40–50	
Stellite [™] alloy 6	Bal.	28.5	4.6	1.2	<2.0	<1.0	<2.0	<2.0	<1.0	R30106	40-46	
Stellite [™] alloy 6LC	Bal.	29	4.5	1.1	<2.0	<1.0	<2.0	<2.0	<1.0	-	38–44	
Stellite [™] alloy 6HC	Bal.	28.5	4.6	1.35	<2.0	<1.0	<2.0	<2.0	<1.0	-	43–53	
Stellite [™] alloy 156	Bal.	28	4	1.7	<2.0	<1.0	<0.5	<2.0	<1.0	-	46–54	
Stellite [™] alloy 12	Bal.	30	8.5	1.45	<2.0	<1.0	<2.0	<2.0	<1.0	R30012	43–53	
Stellite [™] alloy 20	Bal.	32.5	17.5	2.55	<2.0	<1.0	<2.0	<1.0	<1.0	-	52–62	
Stellite [™] alloy 21	Bal.	27.5	-	0.25	2.6	5.4	<2.0	<2.0	<1.0	R30021	27–40 *	
Stellite [™] alloy 22	Bal.	28	-	0.30	1.5	12	<3.0	<2.0	<0.5	-	41–49 *	
Stellite [™] alloy 25	Bal.	20	15	0.1	10	<1.0	2	<1.0	1.9%Mn	-	20–45 *	
Stellite [™] alloy 31	Bal.	26	7.5	0.5	10.5	<1.0	<2.0	<1.0	<0.5	R30031	20–35 *	
Stellite [™] alloy F ³	Bal.	26	12.5	1.8	22	<1.0	<2.0	1.1	<0.5	R30002	40–45	
Stellite [™] alloy 190	Bal.	26	14	3.4	<2.0	<1.0	<2.0	<1.0	<1.0	R30014	55–60	
Stellite [™] alloy 250	Bal.	28	<1.0	0.1	<1.0	<1.0	20	<1.5	<1.0	-	20–28	
Stellite [™] alloy 694	Bal.	28.5	19.5	0.9	5	-	<3.0	<1.0	1%V	-	46-52	
Stellite [™] alloy 706	Bal.	29	-	1.25	<2.0	4.5	<2.0	<1.0	<1.0	-	39–44	
Stellite [™] alloy 712	Bal.	29	-	2.0	<2.0	8.5	<2.0	<1.0	<1.0	-	46–53	
ULTIMET [™] **	Bal.	26	2	0.07	9.4	5	3	<1.0	<1.0	R31233	20–45 *	
	1	COBALT-	BASED T	RIBALOY	ALLOYS	(GAS-ATO	MIZED P	OWDERS)			
Tribaloy [™] alloy T-400	Bal.	8.5	-	<0.08	<1.5	29	<1.5	2.8	<1.0	R30400	51–57	
Tribaloy [™] alloy T-400C	Bal.	14	-	<0.08	<1.5	27	<1.5	2.6	<1.0	-	51–57	
Tribaloy [™] alloy T-401	Bal.	17	-	0.2	<1.5	22	<1.5	1.3	<1.0	-	45–50	
Tribaloy [™] alloy T-800	Bal.	17	-	<0.08	<1.5	29	<1.5	3.7	<1.0	-	53–61	
Tribaloy [™] alloy T-900	Bal.	18	-	<0.08	16	23	<1.5	2.8	<1.0	-	48–55	
		NICKE	L-BASED	SUPERA	LLOYS (G	AS-ATOM	IZED POV	VDERS)				
Nistelle [™] alloy "Super C"	-	23	-	0.1	Bal.	18	<1.0	<1.0	-	-	15–25 *	
Nistelle [™] alloy C	-	17	4.5	0.1	Bal.	17	6	<1.0	0.3%V	-	17–27 *	
Nistelle [™] alloy C4C	-	16	-	-	Bal.	16	<1.0	<1.0	-	N06455		
Nistelle [™] alloy C22	<2.0	21.5	3	-	Bal.	13.5	4	-	0.15%V	-		
Nistelle [™] alloy C276	-	15.5	3.7	-	Bal.	16	5.5	<1.0	0.15%V	-		
Nistelle [™] alloy X	1.5	22	<1.0	0.15	Bal.	9.1	18.5	<1.0	<1.0%	N06002		
Nistelle [™] alloy 305	-	42	-	-	Bal.	-	-	0.5	<1.0%	-		
Nistelle [™] alloy 2315	-	20	-	-	Bal.	-	-	<1.0	<1.0%	-		
Nistelle [™] alloy 600	-	15.5	-	-	Bal.	-	8	<0.5	<1.0%	N06600		
Nistelle [™] alloy 625	-	21.5	-	<1.0	Bal.	9	<1.0	<0.5	3.5% Nb	N06625		
Nistelle [™] alloy 718	<2.0	21.5	3	-	Bal.	13.5	4	-	0.15%V	N07718		

Nominal analysis is a guideline only for standard product. Does not include all incidental elements and may differ depending on the exact specification/standard used when ordering.
 Undiluted weld metal.
 Stellite^w Alloy F usually made to customer specification.
 Depending upon the degree of work hardening.
 **ULTIMET^w is a registered trademark of Haynes International.

STELLITE	

	NOMINAL ANALYSIS OF POWDER ¹ Others							Hardness			
ALLUT	Co	Cr	W	C	Ni	Мо	Fe	Si	Others	UNS	(HRC) ²
		N	CKEL-BA	SED ALLO	DY (GAS-A	TOMIZED		RS)	-		
Deloro [™] alloy 22	-	-	-	<0.05	Bal.	-	<1.0	2.5	1.4%B	-	20–22
Deloro [™] alloy 30	-	9	-	0.2	Bal.	-	2.3	3.2	1.2%B	-	27–31
Deloro [™] alloy 38	-	-	-	0.05	Bal.	-	0.5	3.0	2.1%B	-	35–39
Deloro [™] alloy 40	-	7.5	-	0.3	Bal.	-	2.5	3.5	1.7%B	N99644	38–42
Deloro [™] alloy 45	-	9	-	0.35	Bal.	-	2.5	3.7	1.9%B	-	44–47
Deloro [™] alloy 46	-	-	-	0.05	Bal.	-	-	3.7	1.9%B	-	32–40
Deloro [™] alloy 50	-	11	-	0.45	Bal.	-	3.3	3.9	2.3%B	N99645	48–52
Deloro [™] alloy 55	-	12	-	0.6	Bal.	-	4.0	4.0	2.7%B	-	52–57
Deloro [™] alloy 60	-	15	-	0.7	Bal.	-	4.0	4.4	3.1%B	N99646	57–62
Extrudalloy 50	15	21	-	1.3	Bal.	6	<1.0	3.0	2.3%B	-	-
NICKEL-BASED TRIBALOY® ALLOYS (GAS-ATOMIZED POWDERS)											
Tribaloy [™] alloy T-700	<1.5	16	-	0.08	Bal.	32	<1.5	3.4	<1.0	-	45–52
		IRON-BA	SED HAR	DFACING	ALLOYS	(GAS-ATC	MIZED P	OWDERS)			
Delcrome [™] 90	-	27	-	2.9	-	-	Bal.	<1.0	0.5%Mn	-	Depends on heat treatment
Delcrome [™] 92	<0.5	<1.0	-	3.8	<1.0	10	Bal.	<1.0	<1%Mn	-	55–63
Delcrome [™] 253	<0.5	28	-	1.9	16.5	4.5	Bal.	1.3	0.8%Mn	-	
Delcrome [™] 316	<0.5	17	-	0.05	11	2.6	Bal.	2.5	0.4%Mn	-	<180 DPH
Delcrome [™] 316L Delcrome [™] 317	<0.5	18	-	<0.03	13	2.6	Bal.	1.8	0.7%Mn	-	<180 DPH
Tristelle [™] TS-3	12	35	-	3.1	10	-	Bal.	4.8	0.3%Mn	-	47–51
Delcrome [™] 6272	<0.5	25	-	2.5	14	7	Bal.	1.8	<1.0%	-	
		CARBID	ES IN A C	ORROSIC	ON-RESIS	TANT HAP	RD ALLOY	MATRIX			
Super Stelcar [™] alloy 9365	WC in	an alloy mat	trix								
Super Stelcar [™] alloy 50 plus	WC in	a Deloro [™] 50	0 alloy matri	x							
Super Stelcar [™] alloy 60 plus	WC in	a Deloro™ 60	0 alloy matri	x							

PTA and laser hardfacing powders are available in these standard powder particle size ranges and custom sizes upon request.

WE 63–180µm

E 53–150µm
 G 38–125µm

www.kennametal.com/stellite

HK 63–210µm

¹ Nominal analysis is a guideline only for standard product. Does not include all incidental elements and may differ depending on the exact specifications/standard used when ordering.
² Undiluted weld metal.

Depending upon the process parameters and extent of dilution, the hardness of the weld deposit may vary from that provided in the above table.

WM 53–180µm

Plasma Spraying

In the Plasma Spraying process, powder is softened or melted in the plasma gas stream, which also transfers the particles to the workpiece.

The plasma arc is not transferred to the workpiece, it is contained within the plasma torch between an axial electrode and a water-cooled nozzle. The process is operated in normal atmosphere, in a shielding gas stream (e.g., argon), in a vacuum, or under water.

Due to the high temperature of the plasma gas stream, the plasma spray process is especially suitable for spraying high melting-point metals as well as their oxides.

High-Velocity Oxy-Fuel Spray (HVOF)

Spray Nozzle

In the HVOF process, powder is introduced axially into a chamber in which a gas flame is constantly burning under high pressure. The exhaust gas exits through an expansion nozzle which produces a high-velocity gas stream. The powder particles are heated in this gas stream and transferred by it with high kinetic energy to the surface of the workpiece, forming a dense coating with excellent bonding properties.

Due to the moderate transfer of heat to the powder particles and to the workpiece, which remains relatively cool, there is little metallurgical change to the sprayed material and the workpiece.

www.kennametal.com/stellite

Powder Delivery

Tungsten Carbide HVOF Powders

PPODUCT		NOM	INAL CO	MPOSIT	ION (ma	ss %)	HARDNESS	Nominal size (µm) and
FRODUCT	FOWDERTIFE	Co	Ni	Cr	W	C	(depends on deposition method & parameters)	manufacturing method
JK112H	WC-12Co with fine carbides	12	-	-	Bal.	5.5	1140–1296 DPH 92.7–94.6 R15N	53/10 Agglomerated, sintered & densified.
JK112P (Also sold as JK7112)	WC-12Co with fine carbides	12	-	-	Bal.	5.5	960–1150 DPH 89–93 R15N (equiv. to HRC: ~67–71)	45/10 Agglomerated, sintered & densified.
JK114 (Also sold as JK7114)	WC-12Co with coarse carbides	12	-	-	Bal.	4	1000–1150 DPH 87–94 R15N (equiv. to HRC: ~68–71)	45/10 Agglomerated, sintered & crushed.
JK117 (Also sold as JK7117)	WC-17Co with intermediate carbides	17	-	-	Bal.	5.2	960–1240 DPH 90–95 R15N (equiv. to HRC: ~67–72)	53/15 Agglomerated & sintered.
JK119	WC-9Co with coarse carbides	9	-	-	Bal.	4.2	860–1170 DPH 89–94 R15N (equiv. to HRC: ~65–71)	45/5 Sintered & crushed, blocky.
JK120H (Also sold as JK7109)	WC-10Co-4Cr	10	-	4	Bal.	5.4	1160–1370 DPH 93–95 R15N (equiv. to HRC: ~71–73)	45/5 Agglomerated, sintered & densified.
JK120P (Also sold as JK7109)	WC-10Co-4Cr	10	-	4	Bal.	5.4	825–1030 DPH 89–91 R15N (equiv. to HRC: ~65–71)	53/10 Agglomerated, sintered & densified.
JK125 (Also sold as JK7175, 7176)	A mixed carbide with nickel 70%(W, Cr)xCy 25%WC 6%Ni	_	6	20	Bal.	5	900–1100 DPH 89–92 R15N (equiv. to HRC: ~66–70)	53/10 Agglomerated sintered & densified.
JK6189	WC 10Ni with large carbides	-	10	-	Bal.	3.7	Not available	53/10 Sintered & crushed.

Chromium Carbide HVOF Powders

PRODUCT	POWDER TYPE	NOMINAL C	OMPOSITIO	N (mass %)	HARDNESS	Nominal size (µm) and		
		Ni	Cr	С	(depends on deposition method & parameters)	manufacturing method		
JK135 (Also sold as JK7184)	75% Cr ₃ C ₂ 25% NiCr	20	Bal.	9.7	610–910 DPH 87.5–91.5 R15N (equiv. to HRC: ~58–65) (varies srongly depending on spray parameters)	53/10 Agglomerated, sintered & densified.		

Gas-Atomized Stellite[™] Cobalt-Based HVOF Powders

PRODUCT	STELLITE™		NOM	INAL CO	MPOSIT	ION (ma	ss %)		HARDNESS	Nominal
PRODUCT	ALLOY NO.	Co	Ni	Cr	W	Мо	С	Others	(depends on deposition method & parameters)	size (µm)
JK571 (Also sold as JK7221)	21	Bal.	2.5	28	-	5.5	0.25	Si 2	400–520 DPH 80.5–84.5 R15N (equiv. to HRC: ~40–50)	53/10
JK572 (Also sold as JK7212)	12	Bal.	-	29.5	8	-	1.4	Si 1.5	680–675 DPH 88.1–89.5 R15N	53/10
JK573 (Also sold as JK7231)	31	Bal.	10.5	25.5	7.5	-	0.5	-	32 HRC	45/10
JK575 (Also sold as JK7201)	1	Bal.	-	30	12	-	2.5	-	Not available	53/10
JK576 (Also sold as JK7206)	6	Bal.	-	28	4.5	-	1.1	Si 1.1	495–580 DPH 81.5–86.5 R15N (equiv. to HRC: ~43–54)	53/10
JK577	SF6	Bal.	14.5	19	7.5	-	0.7	Si 2.5 B 1.6	635–790 DPH (505-525 when fused) ~ 85.5 R15N (equiv. to HRC: ~50–51)	53/10
JK579 (Also sold as JK7225)	25	Bal.	10	20	15	1	0.1	Si 1 Mn 1.5	450-490 DPH 82-85.5 R15N (equiv. to HRC: -43-50) (varies strongly depending on spray parameters)	53/10

Gas-Atomized Tribaloy[™] Cobalt-Based HVOF Powders

PRODUCT	TRIBALOY™		NOM	INAL CO	MPOSIT	ION (ma	ss %)		HARDNESS	Nominal	
FRODUCT	ALLOY NO.	Co	Ni	Cr	W	Мо	С	Others	(depends on deposition method & parameters)	size (µm)	
JK554 (Also sold as JK7221)	T-400	Bal.	-	8.5	_	29	<0.08	Si 2.6	450–600 DPH 86–87.5 R15N (equiv. to HRC: ~52–55)	53/10	
JK558H Typically used with hydrogen fuel	T-800	Bal.	-	18	-	28	<0.08	Si 3.4	670–780 DPH 89–92 R15N (equiv. to HRC: ~58–64)	45/5	
JK558P Typically used with carbon fuel (Also sold as JK7580)	T-800	Bal.	-	18	-	28	<0.08	Si 3.4	455–620 DPH 83.5–88.5 R15N (equiv. to HRC: ~46–56)	53/10	
JK559H (Special order)	T-900	Bal.	16	18	-	23	<0.08	Si 2.7	~ 700 DPH	45/5	
JK559P (Special order)	T-900	Bal.	16	18	-	23	<0.08	Si 2.7	~ 500 DPH	53/10	
ULTIMET [™] for JK and Plasma Spray	ULTIMET [™]	Bal.	9	26	2	5	0.06	Si 0.3	~ 500 DPH	53/20	

*ULTIMET[™] is a registered trademark of Haynes International.

www.kennametal.com/stellite

Gas-Atomized Nickel-Based Powders

PPODUCT			NOM	INAL CO	HARDNESS	Nominal					
PRODUCT		Ni	Fe	Cr	W	Мо	C	Others	(depends on deposition method & parameters)	size (µm)	
JK347	Nistelle [™] 2347	Bal.	-	-	-	5	-	AI 6	332–336 DPH 75.3–78.1 R15N	63/15	
JK350 (Also sold as JK7301)	Nistelle [™] 2350	Bal.	-	-	-	-	-	AI 5	285–335 DPH 71–76 R15N	63/15	
JK557 (Also sold as JK7570)	Tribaloy™ T-700	Bal.	-	15.5	-	32.5	<0.08	Si 3.4	~ 700 DPH	45/10	
JK584 (Also sold as JK7640)	Deloro [™] 40	Bal.	2.5	7.5	-	-	0.25	Si 3.5 B 1.7	~ 40 HRC	53/10	
JK585 (Also sold as JK7650)	Deloro [™] 50	Bal.	2.9	11	-	-	0.45	Si 4 B 2.3	~ 50 HRC	53/10	
JK586 (Also sold as JK7660)	Deloro [™] 60	Bal.	4	15	-	-	0.7	Si 4.4 B 3.1	~ 60 HRC	53/10	
JK591H	Nistelle [™] C	Bal.	5.5	16.5	4.5	17	-	-	400–440 DPH ~ 83 R15N (equiv. to HRC: -44-45)	45/5	
JK591P (Also sold as JK7391)	Nistelle™ C	Bal.	5.5	16.5	4.5	17	-	-	375–390 DPH ~ 80 R15N (equiv. to HRC: ~39-41)	63/15	
Nistelle [™] Super C (Jet Kote [™])	Nistelle [™] "Super C"	Bal.	-	23	-	18	-	-	410 DPH (equiv. to HRC: ~ 41)	P: 53/15 H: 45/10	
JK594 (Also sold as JK7392)	Nistelle [™] C-4C	Bal.	-	16	-	16.5	-	-	380–440 DPH ~ 81–83 R15N (equiv. to HRC: ~40-44)	53/15	
JK625 (Also sold as JK7342)	Nistelle [™] 625	Bal.	<5	21.5	-	9	-	(Nb+Ta) 3.7	385–460 DPH ~ 79–83 R15N (equiv. to HRC: ~37-46)	53/20	
JK718 (Also sold as JK7341)	Nistelle [™] 718	Bal.	18	19	-	3	0.06	(Nb+Ta) 5 Al 0.5, Ti 1	275–470 DPH 72.5–81.5 R15N (equiv. to HRC: ~25-45)	45/15	

Gas-Atomized Iron-Based HVOF Powders

PRODUCT	POWDER TYPE		NOM		MPOSIT	ION (ma	HARDNESS	Nominal	
		Co	Ni	Fe	Cr	C	Others	& parameters)	5120 (µ11)
JK513	316 Stainless Steel	-	13	Bal.	17	0.1	Mo 2.5 Si 1	260–315 DPH 69–75 R15N	53/10

Cobalt Based Plasma Spray Powders

PRODUCT	POWDER		NOM	INAL CO	HARDNESS	Nominal				
THODOOT	TYPE	Co	Ni	Cr	W	Мо	С	Others	(depends on deposition method & parameters)	size (µm)
Stellite [™] 157	-	Bal.	-	21	4.5	-	<0.2	B 2.4 Si 1.5	Not available	45/5
Tribaloy [™] T-400	T-400	Bal.	-	8.5	-	29	<0.08	Si 2.6	52 HRC	45/5
Tribaloy [™] T-900	T-900	Bal.	16	18	-	23	<0.08	Si2.7	52 HRC	75/D 53/10

Nickel-Based Plasma Spray Powders

PRODUCT	ALLOY NAME		NOM	INAL CO	MPOSIT	HARDNESS	Nominal			
FRODUCT		Ni	Fe	Cr	W	Мо	С	Others	(depends on deposition method & parameters)	size (µm)
Deloro [™] 55	Deloro [™] 55	Bal.	4	12	_	_	0.6	Si 4.0 B 2.7	52-57 HRC	Various
Deloro [™] 60	Deloro [™] 60	Bal.	4	15	-	-	0.7	Si 4.4 B 3.1	58-62 HRC	Various
Nistelle [™] C276	Nistelle [™] C276	Bal.	5	15.5	3.8	16	-	-	Not Available	106/D 45/5
Nistelle [™] 625	Nistelle [™] 625	Bal.	<5	21.5	-	9	-	(Nb+Ta) 3.7	385-460 DPH 79-83 R15N (equiv. to HRC: ~37-46)	Various
Nistelle™ 2315	Nistelle™ 2315	Bal.	-	20	-	-	-	-	Not Available	106/D 75/45 45/5
Nistelle™ 2350	Nistelle [™] 2350	Bal.	_	-	-	_	_	AI 5	~ 70 HRB	75/45

Gas-Atmozed Iron-Based Plasma Spray Powders

PRODUCT	ALLOY NAME		NOM	INAL CO	MPOSIT	ION (ma	HARDNESS	Nominal	
FRODUCT		Co	Ni	Fe	Cr	С	Others	(depends on deposition method & parameters)	size (µm)
Delcrome [™] 90	Delcrome [™] 90	-	-	Bal.	27	2.8	Si 0.5	Not Available	53/10
Delcrome [™] 92	Delcrome [™] 92	-	-	Bal.	-	3.7	Mo 10	Not Available	45/D
Delcrome [™] 316L/317	316L Stainless Steel	-	13	Bal.	17	0.03	Mo 2.5 Si 1	~ 180 DPH	106/38 106/D 45/5
Tristelle [™] TS-3	Tristelle [™] TS-3	12	10	Bal.	35	3	Si 5	>55 HRC	45/5

Powders labelled "JK" are intended primarily for HFOV spraying with the Jet Kote[™] or Diamond Jet[™] torches but can also be used for plasma spraying. Some of these powders may be listed below in different nominal size ranges for other thermal spray processes.

* Diamond $\mathsf{Jet}^{^{\scriptscriptstyle{\mathsf{M}}}}$ is a registered trademark of Sulzer Metco.

www.kennametal.com/stellite

Flame Spraying with Subsequent Fusing (Spray and Fuse)

Spray and fuse is a two-stage process, the powder alloy being deposited first by flame spraying and then fused. During fusing, the deposit is partially remelted and allowed to resolidify.

In flame-spraying, the powder particles are softened or melted in an oxyacetylene flame and transferred to a prepared workpiece by the expanding gases. An additional gas stream can be used to assist with powder particle transfer.

The second stage of the process, fusing the sprayed coating to the workpiece, is usually done with an oxyacetylene burner. Alternatively, for mass production, fusing can be carried out by induction heating or in a vacuum furnace.

to 0,060" or 0.25 to 1,5 mm) layers, usually on the surface of small cylindrical objects such as pump shafts, packing gland sleeves and pistons, as an alternative to the greater deposit thickness obtained from oxy-acetylene and arc processes. The process can also be used for the facing of flat surfaces, but its possibilities for this type of work are limited.

This process is used for the deposition of relatively thin (0.010"

Since the deposit is thinner and more uniform than that obtained by other welding methods and the heat for fusion is applied uniformly and rapidly, shrinkage and distortion of the component is frequently very small. When the fusing operation is carried out correctly, dilution of the deposit by the base metal is negligible.

Powder Welding

A specially-designed oxy-acetylene torch is used for powder welding. The workpiece is heated with the torch, powder is introduced into the gas stream from the integral powder hopper, and transferred to the workpiece through the flame.

The powder-weld process is ideal for the deposition of smooth, thin, well-bonded layers on flat surfaces on a wide range of substrates, including cast iron. The hardfacing takes place at lower temperatures, which minimizes oxidation and distortion of the workpiece and enables easy surfacing of edges.

STELLITE

Spray and Fuse & Powder Welding

			NO	MINAL A	NALYSIS	Othere	Hardness				
	ALLOY	Co	Cr	W	C	Ni	В	Fe	Si	Others	(HRC) ²
				COBA	LT-BASED	ALLOYS	(GAS-ATC		OWDERS)		
	Stellite [™] alloy SF1	Bal.	19	13	1.3	13.5	2.45	3	2.8	<0.5%Mn	50–60
	Stellite [™] alloy SF6	Bal.	19	7.5	0.8	14	1.7	3	2.6	<0.5%Mn	40-48
	Stellite [™] alloy SF12	Bal.	19	9	1.1	14	1.9	3	2.8	<0.5%Mn	42–52
	Stellite [™] alloy SF20	Bal.	19	15	1.6	14	2.9	3	3.2	<0.5%Mn	55–65
	Stellite [™] alloy 157	Bal.	21	4.5	0.1	<2.0	2.5	<2	1.6	<0.5%Mn	45–55
			-	NICKE	EL-BASED	ALLOYS	(GAS-ATC	MIZED P	OWDERS)		
	Deloro [™] alloy 15	-	-	-	<0.05	Bal.	1.1	0.5	2.0	20%Cu	180–230 DPH
	Deloro [™] alloy 21	-	3	-	<0.05	Bal.	0.8	<0.5	2.1	2.2%	240-280 DPH
	Deloro [™] alloy 22	-	-	-	<0.05	Bal.	1.4	<1.0	2.5	-	1824
	Deloro [™] alloy 25	-	-	-	<0.06	Bal.	1.7	<1.0	2.7	-	22–28
	Deloro [™] alloy 29	-	3	-	<0.05	Bal.	0.9	<0.5	2.2	2.2%	27–30
	Deloro [™] alloy 30	-	9	-	0.2	Bal.	1.2	2.3	3.2	-	29–39
	Deloro [™] alloy 34	-	4.5	-	0.15	Bal.	1.2	0.3	2.8	2.5%Mo 2.2% Other	33–37
	Deloro [™] alloy 35	-	4	-	0.4	Bal.	1.6	1.5	3.4	_	32-42
	Deloro [™] alloy 36	-	7	-	0.3	Bal.	1.2	3	3.7	-	34–42
	Deloro [™] alloy 38	-	-	-	0.05	Bal.	2.1	0.5	3.0	-	35–42
	Deloro [™] alloy 40	-	7.5	-	0.3	Bal.	1.7	2.5	3.5	-	38–45
	Deloro [™] alloy 45	-	9	-	0.35	Bal.	1.9	2.5	3.7	-	42–50
	Deloro [™] alloy 50	-	11	-	0.45	Bal.	2.3	3.3	3.9	-	47–53
	Deloro [™] alloy 55	-	12	-	0.6	Bal.	2.7	4.0	4.0	-	52–60
	Deloro [™] alloy 60	-	15	-	0.7	Bal.	3.1	4.0	4.4	-	57–65
	Deloro [™] alloy 75	-	17	-	0.9	Bal.	3.5	4.5	4.5	2%Cu 3%Mo	53–63
	Deloro [™] alloy 6116	-	15.3	-	0.03	Bal.	4.0	-	-	-	-
						COMPOS	SITE ALLC	YS			
Stelcar [™] Powders Blends of WC, WC/Co and Deloro [™] alloy powders. Size and chemistry to customer requirements								ements			
	Super Stelcar [™] 40	Blenc	l of tungsten	n carbide (40	0%) and Dele	oro 50 [™] alloy	r (60%)				
Super Stelcar [™] 50 Blend of tungsten carbide (50%) and Deloro 50 [™] alloy (50%)											
	Super Stelcar [™] 60	Blend	l of tungsten	n carbide (60)%) and Del	oro 50 [™] alloy	/ (40%)				
	Super Stelcar [™] 70	70 Blend of tungsten carbide (70%) and Deloro 50 ^{°°} alloy (30%)									

Other alloy compositions may be available on request.

¹ Nominal analysis is a guideline only for standard product. Does not include all incidental elements and may differ depending on the exact specification/standard used when ordering. ² Undiluted weld metal. Rockwell (HRC) units unless otherwise stated.

Powder Welding powders are available in these standard size ranges: Spray-fuse powders are available in these standard size ranges:

KS 20–63 μm
 M 45–106 μm (Metco torch)

 • K3
 20-05 μm
 • K
 40-106 μm
 • S
 38-106 μm (Eutectic torch)

K 20–75 μm

Depending upon the process parameters and extent of dilution, the hardness of the weld deposit may vary from that provided in the above table.

22

PRODUCTIVE ATIVE DANCED

OUR MISSION

Kennametal delivers productivity to customers seeking peak performance in demanding environments by providing innovative customized and standard wear-resistant solutions, enabled through our advanced materials sciences, application knowledge, and commitment to a sustainable environment.

SUSTAINABLE ENGINEERING

With decades of experience, Kennametal offers you some of the most effective opportunities for sustainable manufacturing in the industry using the synergies of superior engineering, leading technology, and tailor-made solutions. Our comprehensive range of products, local support, and excellent customer service make Kennametal your complete supplier of sustainable tooling solutions.

Successful project engineering requires planning, teamwork, and disciplined execution. Through our extensive experience in developing and implementing new project engineering strategies, Kennametal has pioneered a proven methodology to help you manufacture new products and bring them to market quickly. Service deliverables are carefully outlined and jointly agreed to before the project begins. We formally evaluate progress and results with you throughout the project through our stage-gate management system. Kennametal can provide your engineering teams and machine tool builders with process engineering support, advanced metalcutting technologies, and project management expertise to help you achieve your sustainability goals. With our best-in-class process, you'll experience accelerated time-to-market, lower overall costs, and reduced risks to implement new technologies.

www.kennametal.com/stellite

UK SALES OFFICE Kennametal Stellite Unit 3, Birch Kembrey Business Park Swindon SN2 8UU UK Phone: 44.1793.498500 Fax: 44.1793.498501

US SALES OFFICE Kennametal Stellite 1201 Eisenhower Drive North Goshen, Indiana 46526 USA Phone: 1.574.534.2585 Fax: 1.574.534.3417

CONTACT US saleshad@stellite.com www.kennametal.com/stellite

HARDFACING ALLOYS

WORLD HEADQUARTERS

Kennametal Inc. 1600 Technology Way Latrobe, PA 15650 USA Tel: 800.446.7738 (United States and Canada) E-mail: ftmill.service@kennametal.com

EUROPEAN HEADQUARTERS

Kennametal Europe GmbH Rheingoldstrasse 50 CH 8212 Neuhausen am Rheinfall Switzerland Tel: 41.52.6750.100 E-mail: neuhausen.info@kennametal.com

ASIA-PACIFIC HEADQUARTERS

Kennametal Singapore Pte. Ltd. ICON@IBP #01-02/03/05 3A International Business Park Singapore 609935 Tel: 65.6.2659222 E-mail: k-sg.sales@kennametal.com

INDIA HEADQUARTERS

Kennametal India Limited 8/9th Mile, Tumkur Road Bangalore - 560 073 Tel: 91.80.2839.4321 E-mail: bangalore.information@kennametal.com

www.kennametal.com

